SLE’s to the Max

William C. Moore Jr. (Willie)

Introduction

The Single Line Edit (SLE) is one of the most basic controls at a programmers disposal. The purpose of this paper is to show how the basic SLE can be expanded. I will be using a class called rightSLE as the demonstrationIt will cover the following:

· Subclassing

· Basic Dispatching

· Right Aligning

· Using Buttons with SLEs

· FileSLE

· DateSLE

· Search SLE

The source code to this session will be available on Compuserve and the CA web site.

Subclassing

Why Subclass

Subclassing performs a couple of functions. First, it protects your code. The next version of CA-Visual Objects may change some functionality of the SLE. By sub classing, I can insure that my default behavior will always happen. Secondly, subclassing allows you to expand a class without changing the base class.

Creating

The first step in extending the SingleLineEdit class functionality is to create a subclass. To create the subclass, add this line of code to a module in your project:

CLASS rightSLE INHERIT SingleLineEdit

For the purpose of this session, we will be working with the following class tree:

SingleLineEdit

 rightSLE

 fileSLE

 fileSLEPB

 dateSLE

 searchSLE

rightSLE is basically a subclass that adds the following functionality.

· Automatic date processing with a popup calendar upon double click or rightmouse

· Right entry of numeric data.

By having a single sub class of SingleLineEdit that acts as a base class for specialized sub classes like searchSLE, Keys like the Esc key and Enter key will acts the same way across the sub classes.

FieldSpecs

Fieldspecs are very usefull as you can define a few that will handle most of your datatypes. The biggest benefit of using fieldspecs is that you can change your database design with minimal code changes. For example, if your application uses a lot of numeric 10.2 fields and you get a customer request to increase the size from 10.2 to 12.2. This becomes a simple change. By changing your numeric fieldspec to 12.2, all of your datawindows will be changed without recoding.

You can subclass the SingleLineEdit control without using fieldspecs. But, the fieldspec make it easier to code as there are properties that you can test for and against.

Using

To use rightSLE or any one of the specialized subclasses of rightSLE, simple use the inherit from property and select the subclass that you want to place (ie rightSLE, searchSLE, etc). Please note that you have to compile rightSLE BEFORE you can select it from the inherit from property box.

Basic Dispatching

You can attach a dispatcher to any control. This gives the programmer incredible control. Example 1 shows the format for the dispatch.

Class mySLE inherit SingleLineEdit

Method dispatch() class mySLE

Infoxbox{self,”Single Line Edit”,”I’m in the dispatcher”}:show()

Return super:dispatch()

If you handle the event, always remember to return a 1L. This will keep CA-Visual Objects from doing any further processing. Otherwise, the default dispatcher will take over .

Responding to the Enter Key

One of the first things I wanted to do when I started window’s programming was to make the keyboard with like CA-Clipper. This ment that I had to have the Enter key take me between controls. CA-Visual Objects does provide this functionality via the CLIPPERKEYS property of the WED. However, using CLIPPERKEYS does have some unwanted side effects. The biggest being that pressing Enter over a pushbutton takes you to the next field. But, by using inheritance, we can subclass the Single Line Edit and overcome that limitation. The key to example 2 is the KEYUP method. That is where you trap the enter Key.

CLASS mySLE INHERIT SingleLineEdit

PROTECT INSTANCE hOwner
AS WORD

Protect nDirection

AS INT

METHOD Init(oOwner, nId) CLASS mySLE

Super:Init(oOwner, nID)

// Get Windows handle of owner window

IF IsInstanceOf(SELF:Owner, #DataWindow)

SELF:hOwner := SELF:Surface:Handle()

ELSE

SELF:hOwner := SELF:Handle()

ENDIF

SLEF:nDirection := 1

// go forward

METHOD KeyUp(oE) CLASS mySLE

// Process keys as required

DO CASE

CASE oE:KeyCode == KEYENTER

If nDirection

Do case

 CASE nDirection = 1

 // Set focus to next control on window

PostMessage(SELF:hOwner, WM_NEXTDLGCTL, 0, 0L)

 CASE nDirection = 2

// move to previous control on window

PostMessage(SELF:hOwner, WM_NEXTDLGCTL, 1, 0L)

END CASE

ENDIF

ENDCASE

RETURN SUPER:KeyUp(oE)

Right Aligned Entry.

There are a couple of issues with right aligned SLEs.

· Setting up the WED for right aligning

· Right entry of numbers.

Setting up the WED

There are a couple of changes you will need to make to CA-Visual Objects 2.0b-4 to allow right aligned SLEs. This only applies to 2.0b-4. 2.5 handles this by default

Right Entry of Numeric Data

CA-Visual Objects 1.x automatically entered numbers from right to left. Unforchantly, CA-Visual Objects 2.x no longer natively supports this behavior. But, through the magic of inheritance, this behavior can be easily added.

The Setup

We will use a custom dispatcher to handle the numeric entry. If the type of the SLE is not numeric, we will simply pass control back to the default dispatcher.

METHOD Dispatch (oEvent) CLASS rightSle

/*

Only the messages, that rightSle wants to know about.

All the rest go through to SingleLineEdit's dispatch and every other class's dispatch that is involved from there - There are lots of them!!!!

 */

 DO CASE

CASE !(SELF:FieldSpec == NULL_OBJECT) .and. SELF:FieldSpec:Valtype == 'N'

DO CASE

CASE oEvent:Message == WM_LBUTTONDBLCLK

SELF:SetFocus()

SELF:selection

:= selection{0,-1}

SELF:lAllSelected
:= TRUE

RETURN 1L

CASE oEvent:Message == WM_KEYDOWN

DO CASE

CASE oEvent:wparam == VK_BACK .or. oEvent:wparam == VK_END .or. ;

oEvent:wparam == VK_HOME .or.;

oEvent:wparam == VK_LEFT .or. ;

oEvent:wparam == VK_RIGHT .or.;

oEvent:wParam == VK_DELETE

SELF:processNum(ControlEvent{ oEvent })

IF oEvent:wparam == VK_BACK
.or. oEvent:wParam == VK_DELETE

/* movement keys other than backspace need to finish processing

*/

RETURN 1L

ENDIF

ENDCASE

CASE oEvent:Message == WM_CHAR

// Don't allow them to update if its set as

// readonly

IF ! SELF:ReadOnly

// Grab the event, the KeyDown and send

// it over to rightSle's KeyDown

SELF:processNum(ControlEvent{ oEvent })

ENDIF

RETURN 1L

ENDCASE

END CASE

// Let all the other messages, go back to VO's Sle Wndproc

RETURN(SUPER:Dispatch(oEvent))

ProcessNum

The processNum method is the key to right entry of numbers. It has to do a number of things. It has to handle selections (ie highlighted text), adding numbers, deleting numbers, backspace, and decimals (both right and left of decimal). ProcessNum should also let the user change a number from positive to negative at will. In addition, the user should be able to enter numbers to the right of the decimal without having to first enter zero (.45 instead of 0.45).

METHOD ProcessNum(oEvent) CLASS rightSle

LOCAL cText

AS STRING

LOCAL cTemp

AS STRING

LOCAL cChar

AS STRING

LOCAL lApplyKey

AS LOGIC

LOCAL cLeftDecimal

AS STRING

LOCAL crightDecimal

AS STRING

LOCAL nDecimals

AS INT

LOCAL nStart

AS DWORD

LOCAL nStop

AS DWORD

LOCAL nPos

AS DWORD

LOCAL nDecimalPos

AS INT

LOCAL lIgnore

AS LOGIC

LOCAL lPoint

AS LOGIC

LOCAL cDecimal

AS STRING

cChar

:= CHR(oEvent:wparam)

nStart

:= SELF:Selection:Start

nStop

:= SELF:Selection:Finish

lApplyKey
:= TRUE

cText

:= SELF:textValue

nPos

:= nStart

cDecimal
:= CHR(SetDecimalSep())

lIgnore
:= FALSE
// by default we want to process everything

nDecimals
:= SELF:fieldSpec:decimals

IF nDecimals > 0
// see what side of the decimal we are on and process

// accordingly

IF At(cDecimal,cText) < nStart+1

lPoint := TRUE
// we have moved to the decimal

// part. set it up

ELSE

lPoint := FALSE

ENDIF

ENDIF

IF nStart <> nStop .and. !SELF:lAllSelected

// we have a group action

IF nStart = 0 .and. nStop = Len(cText)

SELF:lallselected := TRUE

ELSE

cText
:= Stuff(SELF:textValue,nStart+1,nStop-nStart,"")

nPos
:= nStop

ENDIF

IF oEvent:wparam == VK_DELETE .or. oEvent:wparam == VK_BACK

nStart
+= 1

lIgnore := TRUE

ELSEIF oEvent:message == WM_CHAR

lIgnore := TRUE

ELSE

lIgnore := FALSE

ENDIF

ENDIF

// turn off the selection if there is a movement key

// 7/6/98 wcm Added the VK_TAB to keep a user who is tabbing through

// from erasing the sle's contents

IF (oEvent:wparam == VK_END .or. oEvent:wparam == VK_HOME .or. ;

oEvent:wparam == VK_LEFT .or. oEvent:wparam == VK_RIGHT ;

.or. oEvent:wparam == VK_TAB) .and. ;

(SELF:lAllSelected .or. (nStart <> nStop))
// movement keys

// turn off group

// actions

cText

:= SELF:textValue

SELF:lAllselected
:= FALSE

IF nDecimals > 0

nStart
:= At(cDecimal,cText) - 1
// lets reset the

// start point to

// before the decimal

nPos
:= nstart

ELSE

nStart
:= nStop

nPos
:= nStop

ENDIF

ENDIF

IF nDecimals > 0

 IF At(cDecimal,cTEXT) == 0 .or. Len(cText) == 0

cLeftDecimal
:= "0"

cRightDecimal
:= "0"

ELSE

cLeftDecimal := SubStr(cText,1,At(cDecimal,cText)- 1)

cRightDecimal := SubStr(cText,At(cDecimal,cText) + 1)

ENDIF

IF lPoint

nDecimalPos

:= nStart - Len(cLeftDecimal)

ENDIF

ELSE

cLeftDecimal
:= cText

cRightDecimal
:= ""

ENDIF

IF SELF:lAllSelected

IF cChar == cDecimal

IF lPoint

lApplyKey := FALSE

SELF:EventReturnValue
:= 1

ELSE

lPoint := TRUE
// we can only use the decimal

// point once!

cLeftDecimal
:= "0"

cRightDecimal
:= Replicate("0",nDecimals)

nPos += 1

// move to beyond the decimal

ENDIF

ELSEIF cChar == "-"
// wcm 6-6-98

SELF:lTurnNegative := TRUE

cLeftDecimal
:= "0"

cRightDecimal
:= Replicate("0" ,nDecimals)

ELSE

cLeftDecimal
:= cChar

cRightDecimal
:= Replicate("0",nDecimals)

ENDIF

IF lapplyKey

cText
:= SELF:setField(cLeftDecimal+cDecimal+cRightDecimal)

SELF:lAllSelected
:= FALSE

IF nDecimals > 0

IF !lPoint
// added 6-6-98 to allow an initial

//decimal without having to hit 0. first

nPos
:= At(cDecimal,cText) -1

ELSE

nPos
:= At(cDecimal,cText)

ENDIF

ELSE

nPos
:= Len(cText)

ENDIF

ENDIF

ELSE

DO CASE

CASE (oEvent:wparam == VK_BACK .or. oEvent:wparam == ;

 VK_DELETE) .and. oEvent:message == WM_KEYDOWN

// the user hit the back space key

IF !lIgnore

IF lPoint

nDecimalPos -= 1
// lets get the the

// real # of decimals

// showing

DO CASE

CASE nDecimalPos <= 1

cRightDecimal
:= Stuff(cRightDecimal,nDecimalPos,1,"")

OTHERWISE

cRightDecimal
:= Left(cRightDecimal,nDecimalPos - 1) + SubStr2(cRightDecimal,nDecimalPos+1) + Replicate("0",nDecimals-1)

END CASE

nPos -= 1

ELSE

// now we can plug the new number in

IF nStart > 1

cLeftDecimal := Left(cLeftDecimal,nStart -1) + SubStr2(cLeftDecimal,nStart+1)

ELSE

cLeftDecimal := SubStr2(cLeftDecimal,nStart+1)

ENDIF

ENDIF

cText := SELF:setField(cLeftDecimal + CDECimal + Left(cRightDecimal,nDecimals))

/*
Now we have to see if the changed have

resulted in a 0 SLE

If so, reset the cursor to just left of the decimal

*/

IF SELF:fieldspec:Val(cText) = 0

IF nDecimals > 0

nPos
:= At(cDecimal,cText) -1

ELSE

nPos
:= Len(cText)

ENDIF

ENDIF

ENDIF

CASE oEvent:wparam == VK_END
// the user hit the end key

IF nDecimals > 0

lPoint := TRUE

ENDIF

CASE oEvent:wparam == VK_HOME
// the user hit the home key

IF nDecimals > 0

lPoint := FALSE

ENDIF

CASE oEvent:wparam == VK_LEFT
// the user hit the left

// arrow key

CASE oEvent:wparam == VK_RIGHT
// the user hit the right

// arrow key

CASE Instr(cChar,"-") .and. !Instr("-",cText)

// minus sign placed

cText := SELF:setField("-" + cLeftDecimal + CDECimal + Left(cRightDecimal,nDecimals))

CASE Instr(cChar,"+") .and. Instr("-",cText)

// Plus sign entered

cText := SELF:setField(cLeftDecimal + CDECimal + Left(cRightDecimal,nDecimals), -1)

CASE Instr(cChar,cDecimal+"0123456789")

IF cChar == cDecimal

IF lPoint

lApplyKey := FALSE

ELSE

IF nDecimals > 0

lPoint := TRUE

nPos += 1

ENDIF

lApplyKey := FALSE

ENDIF

SELF:EventReturnValue
:= 1

ENDIF

IF lapplyKey

IF lPoint

// decimal positioning goes here

IF nDecimalPos == 1

cRightDecimal := cChar + cRightDecimal

ELSE

cRightDecimal := SubStr(cRightDecimal,1,nDecimalPos-1)+cChar

ENDIF

IF lTurnNegative

cText := SELF:setField("-"+cLeftDecimal + CDECimal + Left(cRightDecimal,nDecimals))

lTurnNegative := FALSE

ELSE

cText := SELF:setField(cLeftDecimal + CDECimal + Left(cRightDecimal,nDecimals))

ENDIF

IF !lIgnore

nPos += 1

ENDIF

ELSE

// on the left of the decimal. Normal

// processing

IF SubStr(cLeftDecimal,nStart,1) == " "

DO WHILE SubStr(cLeftDecimal,nStart,1) == " " .and. nStart < Len(cLeftDecimal)

// we are adjusting the

// nstart forward untill we

// reach a character

nStart += 1

ENDDO

nStart -= 1
// back it down by 1

// to place the

// number on the left

nPos
:= nStart

ENDIF

// wcm 6-6-98 added check for lengh

// before I add the new character

IF nDecimals > 0

IF Len(LTrim(cLeftDecimal) + CDECimal + Left(cRightDecimal,nDecimals)) < SELF:length

cLeftDecimal := Left(cLeftDecimal,nStart) + cChar + SubStr2(cLeftDecimal,nStart+1)

ELSE

SELF:invalidAction()

ENDIF

cTemp := Right(cLeftDecimal + CDECimal + Left(cRightDecimal,nDecimals),SELF:length)

ELSE

IF Len(LTrim(cLeftDecimal)) < SELF:length

cLeftDecimal := Left(cLeftDecimal,nStart) + cChar + SubStr2(cLeftDecimal,nStart+1)

ELSE

SELF:invalidAction()

ENDIF

cTemp := Right(cLeftDecimal,SELF:length)

ENDIF

IF lTurnNegative

cText := SELF:setField("-"+cTemp)

lTurnNegative := FALSE

ELSE

cText := SELF:setField(cTemp)

ENDIF

ENDIF

ENDIF

OTHERWISE

// we do nothing which drops the invalid character or

// message

ENDCASE

ENDIF

SELF:TextValue

:= cText

SELF:value

:= SELF:FieldSpec:Val(cText)

SELF:EventReturnValue
:= 1

nStart

:= nPos

SELF:Selection

:= selection{nStart,nStart}

RETURN(NIL)

A couple of things about this method.

· TextValue will contain the formatted number.

· Value will actually contain the number minus and formatting (no commas).

· nPos is the position within the SLE.

· nStart is the beginning position inside of the SLE

· nEnd is the ending position. If nEnd is greater than nStart, it means that some portion of the SLE was highlighted with the mouse

· cChar is the character representation of the number typed

Accesses

Accesses let you do formatting that are not normally part of a class. For example, by creating a custom access called zeroPad, you can return the number that was entered in string format with zeros entered infront of the number.

ACCESS ZeroPad() CLASS RightSLE

RETURN iif(ValType(SELF:value) == "C", ;

StrZero(Val(SELF:value),SELF:length), ;

StrZero(SELF:value,SELF:length))

Bitmap Buttons

There are many times where you want to give your users a visual clue to what you are looking for in a Single Line Edit. Dynamically created Bitmap Buttons accomplish this. But, as we visually lay out our SLEs from the WED, we do not want to disturb the other controls on the screen. Therefore, we will size out SLE down to accomdate the button.

CLASS SearchSLE INHERIT SingleLineEdit

EXPORT symMethod AS SYMBOL

EXPORT oPB
 AS OBJECT

METHOD Init(oForm,oResID,oPoint,oDim,kStyle) CLASS SearchSLE

LOCAL lpRect IS _WINRECT

SUPER:init(oForm,oResID,oPoint,oDim,kStyle)

SELF:symMethod
:= String2Symbol("sleSearch")

oPoint := SELF:origin

oDim := SELF:size

oPoint:y -= 1

oPoint:x := oPoint:x + oDim:width-28

oDim:width := 30

oDim:height += 1

oPB := searchPB{oForm,10103,oPoint,oDim,SELF}

SetWindowPos(SELF:handle(),0L,0,0,SELF:size:width-30, SELF:size:height,SWP_NOMOVE+0x14)

GetWindowRect(SELF:handle(),@lpRect)

// before we leave, show the push button we created

oPB:show()

CLASS SearchPB INHERIT wmBitmapButton

PROTECT oSearchSLE AS SearchSLE

METHOD Init(oForm,oResID,oPoint,oDim,oSLE) CLASS SearchPB

SELF:oSearchSLE := oSLE

SUPER:init(oForm,oResID,oPoint,oDim)

SELF:hBitmapUp := LoadBitmap(_GetInst(),String2Psz("IBM_MAGNIFUP"))

SELF:hBitmapDown := LoadBitmap(_GetInst(),String2Psz("IBM_MAGNIFDN"))

Now that we have a button out beside our Single Line Edit, the obvious question is how do we trigger a SLE from the bitmap. Again we go back to the dispatcher. But this time we will use the Bitmap Button’s dispatcher. Once we are in the dispatcher, we can invoke any function or method and send it the SLE as a parameter. In the following example, I send the the contents of the SLE to a method specified by the symMethod symbol.

METHOD Dispatch(oE) CLASS SearchPB

DO CASE

CASE oE:Message == WM_LBUTTONUP

IF IsMethod(SELF:oSearchSLE:owner,oSearchSLE:symMethod)

Send(SELF:oSearchSLE:owner,oSearchSLE:symMethod,SELF:oSearchSLE,SELF:oSearchSLE:CurrentText)

// Return 1L we we have handdled this key

RETURN 1L

ENDIF

ENDCASE

RETURN SUPER:Dispatch(oE)

FileSLE

Microsoft provides a set of standard dialogs for doing common tasks. One of those tasks is a standard dialog for selecting a file. By subclassing Sinle Line edit, we can take advantage of the standard File Open dialog and send the results back to our Single Line Edit. The following example show how we can accomplish this task.

CLASS FileSLE INHERIT SingleLineEdit

PROTECT nDialogType := 1
AS INT

EXPORT xFilter,xFilterDesc AS USUAL

METHOD Dispatch(oEvent) CLASS FileSLE

DO CASE

CASE oEvent:Message == WM_LBUTTONDBLCLK

SELF:MouseButtonDoubleClick(ControlEvent{oEvent})

RETURN 1L

ENDCASE

RETURN(SUPER:Dispatch(oEvent))

METHOD MousebuttonDoubleClick(oMe) CLASS fileSle

LOCAL oFileDLG AS StandardFileDialog

IF nDialogType == 1

// Open File Dialog

oFileDLG := OpenDialog{SELF:owner,SELF:currenttext}

IF SELF:xFilter <> NIL

oFileDLG:SetFilter(SELF:xFilter,SELF:xFilterDesc)

ELSE

oFileDLG:SetFilter("*.*","All FIles")

ENDIF

oFileDLG:show()

IF !Empty(oFileDLG:FileName)

SELF:textvalue := oFileDLG:FileName

ENDIF

ELSE

oFileDLG := SaveAsDialog{SELF:owner,SELF:currenttext}

IF SELF:xFilter <> NIL

oFileDLG:SetFilter(SELF:xFilter,SELF:xFilterDesc)

ELSE

oFileDLG:SetFilter("*.*","All FIles")

ENDIF

oFileDLG:show()

IF !Empty(oFileDLG:FileName)

SELF:textvalue := oFileDLG:FileName

ENDIF

ENDIF

RETURN NIL

FileSLEPB

In addition to the fileSLE, there is fileSLEPB. This is a push button version of the File Open dialog that inherits from fileSLE. It places a Bitmap Button of a file folder immediately beside the SLE. This give a visual clue as to what input is expected. It also keeps you from having to double click the SLE to open up the dialog box. However, the fileSLEPB does respond to the double click just as it’s parent.

DateSLE

DateSLE is a subclass of PEDateSLE written by Graham McKenie. It adds a Bitmap Button of a calandar imidiately to the right of the SLE. It does maintain the right mouse menu of PEDateSLE. The following is the init of dateSLE.

METHOD Init(oOwner, nId, oPoint, oDim, kStyle) CLASS DateSle

LOCAL lpRect IS _WINRECT

SUPER:Init(oOwner, nID, oPoint, oDim, kStyle)

oPoint := SELF:origin

oDim := SELF:size

oPoint:y -= 1

oPoint:x := oPoint:x + oDim:width-28

oDim:width := 30

oDim:height += 1

oPB := DatePB{oOwner,10101,oPoint,oDim,SELF}

oPB:show()

SetWindowPos(SELF:handle(),0L,0,0,SELF:size:width-30,SELF:size:height,SWP_NOMOVE+0x14)

GetWindowRect(SELF:handle(),@lpRect)

SELF:FieldSpec := DateFS{}

// Add a popup menu to the PEDateSle - two items Today and Calendar

SELF:ContextMenu := PEDateSleContextMenu{ SELF)

// Default to an empty data value, if you don't the keydown method will screw up because

// the test of If !
(oControl:Value == NULL_DATE) will fail because oControl:Value will be Nil not Null_Date

SELF:Value := Null_Date

Sending a Date to the Calendar

One addition that I have made to the origin PEDateSLE is the ability to pass whatever is in the SLE to the control and set the calendar . The dafult is to always set the calendar to today(). To accomplish this I plugged the following into the postinit() of dlgPECalendar.

METHOD PostInit(oParent,uExtra) CLASS dlgPECalendar

LOCAL oOrigin
AS Point

LOCAL oSize

AS Dimension

LOCAL lAlignLeft
AS LOGIC

LOCAL oDateSle
AS OBJECT

LOCAL dOldDate
AS DATE

oDateSle := uExtra

// pick up what the user typed into the SLE control

dOldDate := CToD(oDateSle:textvalue)

// Get the the stuff about the sle that we need

oOrigin

:= PClone(oDateSle:Origin)

oSize

:= PClone(oDateSle:Size)

lAlignLeft
:= oDateSle:lAlignCalendarLeft

// Origin:x is always the Sle's origin:x unless the alignment is right-

oOrigin:x := iif(! lAlignLeft, oOrigin:x + oSize:Width, oOrigin:x)

// Origin:y has to be fiddled with to make the calendar align just below the Sle. Jeez I hate Cartesian coorordinates

// - one line of code and how long does it take to figure it out. Bloody CommonView, why didn't they take it all out

SELF:Origin := Point{ oOrigin:x, SELF:Owner:Size:Height - SELF:Size:Height - (SELF:Owner:Size:Height - oOrigin:y) }

SELF:oDCCalendar:CurrentDate := iif(dOldDate == NULL_DATE,Today(),dOldDate)

RETURN(SELF)

SearchSLE

The searchSLE is a subclass of SingleLineEdit that allow you to set up a browser window and pass the fields and dataserver at runtime. Below is the init of searchSLE

METHOD Init(oForm,oResID,oPoint,oDim,kStyle) CLASS SearchSLE

LOCAL lpRect IS _WINRECT

SUPER:init(oForm,oResID,oPoint,oDim,kStyle)

METHOD Init(oForm,oResID,oPoint,oDim,kStyle) CLASS SearchSLE

LOCAL lpRect IS _WINRECT

SUPER:init(oForm,oResID,oPoint,oDim,kStyle)

SELF:symMethod
:= String2Symbol("sleSearch")

oPoint := SELF:origin

oDim := SELF:size

oPoint:y -= 1

oPoint:x := oPoint:x + oDim:width-28

oDim:width := 30

oDim:height += 1

oPB := searchPB{oForm,10103,oPoint,oDim,SELF}

SetWindowPos(SELF:handle(),0L,0,0,SELF:size:width-30,SELF:size:height,SWP_NOMOVE+0x14)

GetWindowRect(SELF:handle(),@lpRect)

// before we leave, show the push button we created

oPB:show()

The big difference between this init and the others we have looked at is the following line:

SELF:symMethod
:= String2Symbol("sleSearch")

This sets up an exported variable called symMethod which is the method to invoke when the push button is clicked. A doubleclick on the SLE will also invoke the symMethod.

The Dispatch

The trick to sendingthe SLE to the method is contained in the searchSLE’s dispatch. It uses the send command to invoke the method (if it exists). Here is the code to invoke the method.

METHOD Dispatch(oE) CLASS SearchPB

DO CASE

CASE oE:Message == WM_LBUTTONUP

IF IsMethod(SELF:oSearchSLE:owner,oSearchSLE:symMethod)

Send(SELF:oSearchSLE:owner,oSearchSLE:symMethod,SELF:oSearchSLE,SELF:oSearchSLE:CurrentText)

RETURN 1L

ENDIF

ENDCASE

RETURN SUPER:Dispatch(oE)

You will notice that I use the IsMethod function to check for the existance of the method before I call it. This is necessary as the symMethod variable is not known at compile time.

Conclusion

This paper has presented several extensions to the default SingleLineEdit. CA-Visual Objects is a very powerful language and through inheritance, you can make your SingleLineEdits much more user friendly.

Willie Moore is the Information Technolgy Officer for Optimize Digital Solutions located in Birmingham Alabama. He has been programming in Clipper since Summer ’87 and has been producing applications in Visual Objects since release 1.0. He is a Microsoft Certified Systems Enginner and a Microsoft Certified Trainer. Willie can be reached on the internet at williem@bigfoot.com and on Compuserve at 112374,351

20 William C. Moore Jr. (Willie)

SLE’s to the Max 19

